Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Industrialization of the Commercial Hydrogen Engine till 2025

2024-01-16
2024-26-0167
India striving for carbon neutrality influences futures powertrain architecture of commercial vehicles. The use of CO2-free drives as battery electric have been demonstrated for various applications. The productivity still is a challenge due to missing high power charging infrastructure or limited range. This draws the attention to the use of sustainable fuels due to lower refueling times. The hydrogen engine got highest attention in the last couple of years. For markets as the EU the driver for hydrogen is the CO2 emission reduction, whereas for markets as India hydrogen offers the additional opportunity for more independence from fossil imports. Different OEMs all over the world have converted diesel engines to hydrogen operation with strong focus on performance and emission demonstration, so far with limited technology readiness of different key components.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Journal Article

Measurement of Piston Friction with a Floating Liner Engine for Heavy-Duty Applications

2022-03-29
2022-01-0601
The further increase in the efficiency of heavy-duty engines is essential in order to reduce CO2 emissions in the transport sector. This is also valid for the future use of alternative fuels, which can be CO2-neutral, but can cause higher total costs of ownership due to higher prices and limited availability. In addition to thermodynamic optimization, the reduction of mechanical losses is of great importance. In particular, there is a high potential in the piston bore interface, since continuously increasing cylinder pressures have a strong influence on the frictional and lateral piston forces. To meet these future challenges of increasing heavy-duty engine efficiency, AVL has developed a floating liner engine for heavy-duty applications based on its tried and tested passenger car floating liner concept.
Technical Paper

Calibrating BEV and HEV Powertrains for Dynamic Performance Targets

2021-09-05
2021-24-0100
Calibrating a vehicle’s powertrain for dynamic operation needs to focus on efforts to mitigate the risks of thermal overload which may arise in the stator or rotor components of an e-motor. Risks also may arise for expected NVH or durability targets, with torque and torque “oscillations” acting as primary sources for the vehicles’ NVH behavior. Both topics, temperature measurement of stator and rotor as well as dynamic torque measurements of the powertrain’s drive shaft are addressed with examples demonstrating the sensors applications in normal test bed and vehicle configurations.
Technical Paper

Hydrogen ICE Combustion Challenges

2023-08-28
2023-24-0077
Hydrogen promises to provide some highly desired features for clean and efficient combustion, but harvesting efficiency and emission potentials as well as meeting engine durability requirements needs careful adaption of both, combustion system components and engine operation strategies. Key points for H2-ICE combustion are some specific and unique features of H2/air mixtures, among which – to name only a few – excellent dilutability, lean burn capability, low ignition energy and high molecular diffusivity and their consequences on ICE operation do play prominent roles. H2 admission via port or direct injection, compression ratio selection and injection timing provide a set of parameters to control combustion features.
Technical Paper

Verification and Validation for Modular Development Platforms

2023-04-11
2023-01-0476
As electrified powertrains trends towards the new norm in development, the need to consider modular development approaches becomes more prevalent. Modular system developments seek to offer an adaptable product range by considering each system component (transmission, e-motor, inverter, battery, etc.) and system element (park-lock, disconnect, differential, etc.) as interchangeable. This can result in a lower cost development process overall to increase the returns for tier1 suppliers by expanding the marketability of the platform. Such an approach has hitherto held relatively low commercial interest as the rate of technological advancement negated the benefits of a modular development due to the lack of long-term competitivity. Previously large technological advances between successive productions and the relatively limited EV market, centred around SUV and small car applications, reduced the value in committing to a platform development.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Impact of Injection Valve Condition on Data-driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2024-04-09
2024-01-2836
The advent of digitalization opens up new avenues for advances in large internal combustion engine technology. Key engine components are becoming "intelligent" through advanced instrumentation and data analytics. By generating value-added data, they provide deeper insight into processes related to the components. An intelligent common rail diesel fuel injection valve for large engine applications in combination with machine learning allows reliable prediction of key combustion parameters such as maximum cylinder pressure, combustion phasing and indicated mean effective pressure. However, fault-related changes to the injection valve also have to be considered. Based on experiments on a medium-speed four-stroke single-cylinder research engine with a displacement of approximately 15.7 liter, this study investigates the extent to which the intelligent injection valve can improve the reliability of combustion parameter predictions in the presence of injection valve faults.
Technical Paper

Parameterization of an Electrochemical Battery Model Using Impedance Spectroscopy in a Wide Range of Frequency

2024-04-09
2024-01-2194
The parameterization of the electrochemical pseudo-two-dimensional (P2D) model plays an important role as it determines the acceptance and application range of subsequent simulation studies. Electrochemical impedance spectroscopy (EIS) is commonly applied to characterize batteries and to obtain the exchange current density and the solid diffusion coefficient of a given electrode material. EIS measurements performed with frequencies ranging from 1 MHz down to 10 mHz typically do not cover clearly isolated solid state diffusion processes of lithium ions in positive or negative electrode materials. To extend the frequency range down to 10 μHz, the distribution function of relaxation times (DRT) is a promising analysis method. It can be applied to time-domain measurements where the battery is excited by a current pulse and relaxed for a certain period.
Technical Paper

High load Operation of Lithium-Ion Batteries – Modeling Study on a LiFePO4 Graphite Cell

2024-04-09
2024-01-2193
Modeling of lithium iron phosphate electrodes calls for appropriate extensions of established model approaches. An electrochemical pseudo two-dimensional and a single-particle model are enhanced to address the phase separating behavior of this material with a variable solid state diffusion model. A particle size distribution model tackles the heterogeneity of the electrode microstructure. Both models are embedded in a framework to describe multi-layer electrode designs featuring segregated material properties. The models are parameterized following literature replicating a good match with measured discharge curves at low, medium and high currents. A simplified version of the rigorous model shows the effort of reparameterization, the computational advantage of model order reduction techniques, the model accuracy and application scope.
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Technical Paper

Validation of Powertrain Systems Based on Usage Space Analysis Considering Virtual Road Load Profiles

2024-04-09
2024-01-2424
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements.
Technical Paper

Computational Study of a DrivAer Model by Using the Partially-Averaged Navier-Stokes Approach in Combination with the Immersed Boundary Method

2024-04-09
2024-01-2527
This paper presents calculations of external car aerodynamics by using the Partial-Averaged Navier-Stokes (PANS) variable resolution model in conjunction with the Finite Volume (FV) immersed-boundary method. The work presented here is the continuation of the study reported in Basara et al. [1, 2]. In that work, it was shown that the same accuracy of predicted aerodynamic forces could be achieved for both types of computational meshes, the standard body-fitted mesh and the immersed boundary (IB) Cartesian mesh, by using the Reynolds-Averaged Navier-Stokes (RANS) k-ζ-f model as well as by using the Partially-Averaged Navier-Stokes (PANS) method. Based on the accuracy achieved, Basara et al. [2] concluded that further work could focus on evaluating the turbulence modelling on the immersed boundary meshes only.
Technical Paper

A new Evaluation Approach for NVH Efficiency of E-Drive Encapsulations

2024-06-12
2024-01-2955
Encapsulations of E-drive systems are gaining importance in electric mobility, since they are simple measure to improve the noise behavior of the drive. Current experimental evaluation methods however pose substantial challenges for the test personnel and are associated with considerable effort in both time and cost. Evaluating the encapsulation on an e-drive test bed, for example, requires a functional e-drive and test bed resources. Evaluations in the vehicle on the other hand make objective assessments difficult and are subject to increasingly limited availability of prototype vehicles fit for NVH testing. To overcome these challenges, AVL has developed a new experimental evaluation method for the NVH efficiency of e-drive encapsulations. In this method, the e-drive is freely suspended in a semi-anechoic chamber and its structure is excited using shakers while the radiated noise with and without encapsulation is measured.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Technical Paper

Brake Emission Testing Process – Assuring Repeatability and Reproducibility of Emission Measurement Results

2023-11-05
2023-01-1876
Non-exhaust emissions are clearly one of the focal points for the upcoming Euro 7 legislation. The new United Nations Global Technical Regulation (UN GTR) defining the framework for brake emission measurements is about to be officially published. The first amendment to this text is already on the way through the United Nations Economic Commission for Europe (UNECE) hierarchy for decision making. In real life, the final emission factor as the ultimate result of a test is influenced by inaccuracies of numerous parts of the measurement system as well as additional contributing factors like the performance of the particulate filter handling process, which might not be primarily related to equipment specifications.
Journal Article

Numerical Analysis of Combustion Process in the Dual Fuel Internal Combustion Engine

2023-04-11
2023-01-0206
Fully flexible dual fuel (DF) internal combustion (IC) engines, that can burn diesel and gas simultaneously, have become established among heavy-duty engines as they contribute significantly to lower the environmental impact of the transport sector. In order to gain better understanding of the DF combustion process and establish an effective design methodology for DFIC engines, high fidelity computational fluid dynamics (CFD) simulation tools are needed. The DF strategy poses new challenges for numerical modelling of the combustion process since all combustion regimes have to be modelled simultaneously. Furthermore, DF engines exhibit higher cycle-to-cycle variations (CCV) compared to the pure diesel engines. This issue can be addressed by employing large eddy simulation coupled with appropriate DF detailed chemistry mechanism. However, such an approach is computationally too expensive for today’s industry-related engine calculations.
X